Fuel Injection

The carburetor, despite all its advances: air bleeds, correction jets, acceleration pumps, emulsion tubes, choke mechanisms, etc., is still a compromise. The limitations of carburetor design is helping to push the industry toward fuel injection.

Direct fuel injection means that the fuel is sprayed directly into the combustion chamber. The fuel injected nozzle is located in the combustion chamber.

Throttle Body injection systems locate the injector(s) within the air intake cavity, or “throttle body”. Multi-point systems use one injector per cylinder, and usually locate the injectors at the mouth of the intake port.

The fuel injector is an electromechanical device that sprays and atomizes the fuel. The fuel injector is nothing more than a solenoid through which gasoline is metered. When electric current is applied to the injector coil, a magnetic field is created, which causes the armature to move upward. This action pulls a spring-loaded ball or “pintle valve” off its seat. Then, fuel under pressure can flow out of the injector nozzle. The shape of the pintle valve causes the fuel to be sprayed in a cone-shaped pattern. When the injector is de-energized, the spring pushes the ball onto its seat, stopping the flow of fuel.

Mechanical Fuel Injection

Mechanical fuel injection is the oldest of the fuel injection systems. It uses a throttle linkage and a governor. It is now used mainly on diesel engines. Hydraulic fuel injection is used by some of the imports. Hydraulic pressure is applied to a fuel distributor as a switching device to route fuel to a specific injector. The fuel from the tank is carried under pressure to the fuel injector(s) by an electric fuel pump, which is located in or near the fuel tank. All excess is returned to the fuel tank.

Electronic Fuel Injection

The principle of electronic fuel injection is very simple. Injectors are opened not by the pressure of the fuel in the delivery lines, but by solenoids operated by an electronic control unit. Since the fuel has no resistance to overcome, other than insignificant friction losses, the pump pressure can be set at very low values, consistent with the limits of obtaining full atomization with the type of injectors used. The amount of fuel to be injected is determined by the control unit on the basis of information fed into it about the engine’s operating conditions. This information will include manifold pressure, accelerator enrichment, cold-start requirements, idling conditions, outside temperature and barometric pressure. The systems work with constant pressure and with “variable timed” or “continuous flow” injection. Compared with mechanical injection systems, the electronic fuel injection has an impressive set of advantages. It has fewer moving parts, no need for ultra-precise machining standards, quieter operation, less power loss, a low electrical requirement, no need for special pump drives, no critical fuel filtration requirements, no surges or pulsations in the fuel line and finally, the clincher for many car makers, lower cost.

Similar Posts

Leave a Reply